
Concurrent Encrypted Multimaps

Archita Agarwal, Seny Kamara, and Tarik Moataz

MongoDB, New York, NY 10019, USA
{archita_agarwal,seny_kamara,tarik_moataz}@mongodb.com

Abstract. Encrypted data structures have received a lot of attention
due to their use as building blocks in the design of fast encrypted search
algorithms and encrypted databases. An important design aspect that,
as far as we know, has not been considered is that modern server ar-
chitectures are concurrent in the sense that they support the execu-
tion of multiple operations simultaneously. In this work, we initiate the
study of concurrent encrypted data structures. We identify new defini-
tional and technical challenges posed by concurrency in the setting of
encrypted search. In order to formalize the security of these schemes,
we extend the standard framework of structured encryption to capture,
among other things, fine-grained leakage which occurs at the instruction
level as well as schedule-dependent leakage which changes as a function
of the order in which instructions are executed. The latter is particularly
challenging to handle when the scheduler is adversarial and adaptive. We
provide security definitions in the ideal/real-world model which allows
us to capture both security and consistency together.
We combine techniques from structured encryption and concurrent data
structures to design the first concurrent encrypted multi-map. We show
that it is not only secure and efficient, but also satisfies a strong consis-
tency guarantee called linearizability while supporting lock-free append
operations and requiring no inter-client communication.

Keywords: Encrypted search · Concurrent data structures · Concur-
rent encrypted data structures.

1 Introduction

Encrypted multi-maps (EMM) are end-to-end encrypted data structures that
store label/value pairs and support get and put operations in sub-linear time.
EMMs are a core building block in the design of sub-linear encrypted databases
and searchable symmetric encryption (SSE) schemes. As encrypted databases
gain popularity and interest from industry, new problems at the intersection of
cryptography and distributed systems are emerging. One example is the prob-
lem of designing encrypted distributed data structures studied in [1,2]. These
are encrypted data structures designed to be stored and managed by clusters of
machines as opposed to a single server as is traditionally considered in the en-
crypted search literature. Encrypted distributed structures are a crucial building
block for the design of real-world encrypted databases since, in practice, most
databases are distributed and run on clusters.

2 A. Agarwal et al.

Another practical problem that, as far as we know, has received very little
attention is the problem of designing concurrent encrypted structures by which
we mean dynamic encrypted structures that can be accessed concurrently while
providing strong consistency guarantees and high throughput. This is a funda-
mental problem because every real-world database system is concurrent. More
precisely, the literature in encrypted search usually models database server exe-
cutions as sequential in the sense that the server is assumed to execute operations
in their entirety one after the other. For example, upon receiving a sequence of
operations (op1, . . . , opn) from a client it executes opi entirely before executing
opi+1. Even in multi-client settings, the server is assumed to order the operations
of the clients and then execute them fully in that order.

Concurrency and consistency. In reality, database servers do not execute opera-
tions sequentially. They use multi-threading and often multiple cores to execute
many operations simultaneously. This increases operation throughput since the
server can make progress on an operation opi while waiting for an expensive call
from operation opj to return (e.g., a call to disk). Database servers do not view
operations as atomic objects that must be executed in their entirety at once
but, instead, as sequences of lower-level atomic instructions that can be context-
switched at any moment by the operating system scheduler. Concurrency intro-
duces a host of challenges, the most important of which is that the traditional
notions of correctness are not meaningful. Consider a multi-map that stores a
label/tuple pair (ℓ, v), where v = (v1, . . . , v10), an append operation (ℓ, v11) and
a get operation on ℓ. Now suppose the append and get operations are concurrent.
Should we require the get operation to return (v1, . . . , v10) or (v1, . . . , v11)? Ei-
ther answer is acceptable depending on exactly how the lower-level instructions
of the two operations are scheduled. Because of this, correctness in concurrent
settings is replaced with the notion of consistency which guarantees that the
outputs of the operations are consistent with some sequential order of the op-
erations; even if their instructions are actually interleaved. Returning to the
example, if the get outputs (v1, . . . , v11) then its output is consistent with the
sequential order (append, get), whereas if it outputs (v1, . . . , v10) its output is
consistent with the sequential order (get, append).

Many different notions of consistency have been defined and studied. Some
are weaker in the sense that they allow for more sequential orders and some are
stronger in the sense that they allow for fewer. For example, linearizability [35]
is a very strong consistency notion which, roughly speaking, guarantees that the
output of the operations preserve their real-time ordering, i.e, if opi completes
before opj begins, then any effect of opi will be reflected in opj ’s output. In our
example above, linearizability guarantees that if the append finishes before the
get starts, then the get’s output will include the value added by the append. In
contrast, the weaker notion of sequential consistency [48], would allow the get
to output either (v1, . . . , v10) or (v1, . . . , v11) as long as the get and append were
made by different clients.

Concurrent Encrypted Multimaps 3

Concurrent EMMs. Based on the discussion above, it should be clear that real-
world encrypted databases and their underlying data structures need to support
concurrent executions and guarantee some notion of consistency. As far as we
know, the only semi-dynamic or dynamic EMM construction that can achieve
high throughput and some form of consistency under concurrent operations is
the OST scheme of [42] which underlies MongoDB’s Queryable Encryption. A
limitation of the scheme, however, is that the scheme itself is only designed to
provide high throughput while consistency is achieved at the implementation
level by making use of database transactions. This has two implications. The
first is that the scheme itself is not provably consistent. The second is that the
way transactions are used may not necessarily lead to optimal throughput. The
design of concurrent EMMs is highly non-trivial and to see why we will go over
various possible solutions and explain why they do not work.

The first solution one might think of is to start with a dynamic EMM and
modify it using standard techniques from the concurrency literature. As an ex-
ample, one might start with the following simplified version of the πbas con-
struction from [15]. At a high level it works by breaking down a label/tuple
pair (ℓ, v), where v = (v1, . . . , vn), into n pairs where the ith pair is of the
form (ℓ||i, vi). Each pair is then stored as (F (Kℓ,1, i), Enc(Kℓ,2, vi)) in a stan-
dard/plaintext dictionary, where F is a pseudo-random function, Enc is a sym-
metric encryption scheme, and Kℓ,1 and Kℓ,2 are label-specific keys computed
using a pseudo-random function. To execute a get operation for ℓ, the client
sends Kℓ,1 to the server who uses it as follows. It initializes a counter i to 1
and computes tagi := F (Kℓ,1, i). It then queries the dictionary on tagi. If the
tag is in the dictionary, the server returns the associated ciphertext, increments
the counter and repeats the process. If, on the other hand, tagi is not in the
dictionary it stops. To add a value vn+1 to ℓ’s tuple, the client sends the pair
(F (Kℓ,1, n + 1), Enc(Kℓ,2, vn+1)). Notice that in order to guarantee correctness,
the client has to keep local counters for every label (client state is needed by most
semi-dynamic and dynamic EMMs that achieve standard notions of security).

Naive server-side synchronization. To achieve consistency with a multi-client
stateful dynamic EMM, the clients need to synchronize on their state. This is
clear in the case of πbas and to see why consider a setting where two clients Ci

and Cj concurrently append values v and v′, respectively, to a label ℓ’s tuple
(v1, . . . , vn). In this case, both Ci and Cj will use their local state to send
(F (Kℓ,1, n + 1), v) and (F (Kℓ,1, n + 1), v′) to the server which will result in one
pair overwriting the other. One approach to address this could be to encrypt
and outsource the state to the server and synchronize using locks, which is a
primitive that ensures exclusive access to shared resources. To append values,
clients would then need to acquire the lock, retrieve and decrypt the state, send
the new pair together with an updated and encrypted state and release the lock.

This naive form of server-side synchronization has both consistency and se-
curity issues. Suppose we have two clients Ci and Cj and that when Ci acquires
the lock the counter is at 5 and when Cj acquires the lock the counter is at
6. In this case, Ci sends (F (Kℓ,1, 6), Enc(Kℓ,2, vi)) to the server whereas Cj

4 A. Agarwal et al.

sends (F (Kℓ,1, 7), Enc(Kℓ,2, vj)). Now, we will describe an execution schedule
in which Cj ’s append will not be output by its own get which proves that the
construction is not linearizable. This happens if Cj ’s append is scheduled but
Ci’s append is not. In this case, (F (Kℓ,1, 7), Enc(Kℓ,2, vj)) is inserted into the
dictionary whereas (F (Kℓ,1, 6), Enc(Kℓ,2, vi)) is not. Notice that if Cj executes
a get on ℓ after its append is completed, it will not receive vj because when
the server queries the dictionary on the tag F (Kℓ,1, 6), it will not find it and,
therefore, stop and return the values associated with counters 1 through 5. Lin-
earizability requires gets to return all the values of appends that finished before
the get started, so this construction is not linearizable. In fact, this construction
does not even achieve the weaker notion of sequentially consistency and only
satisfies the weakest form of consistency known as eventual consistency.

A general approach for linearizability. The problem with the previous approach
is that only locking the state is not enough to synchronize append and get op-
erations. A general-purpose way to fix this is to put both the state and the
EMM—the dictionary in the case of πbas—together under one lock. In this case,
only one operation can change or read the structure/dictionary at a time. This
solution, however, severely limits scalability and throughput and essentially op-
erates like a sequential implementation.

Naive state access. Another issue with naive server-side synchronization is that
naively accessing the state could leak additional information. Specifically, if the
clients only retrieves the relevant (encrypted) counter during an append, the
server would learn append-to-append correlations (i.e., whether two appends
are for the same label or not). This can be avoided if the clients retrieve the
entire state each time or store and query it using an oblivious RAM (ORAM)
but both approaches are costly.

1.1 Our Contributions

In this work, we initiate the study of concurrent encrypted data structures.
Specifically, we formalize, define and construct a multi-map encryption scheme
that encrypts multi-maps in such a way that they can be accessed concurrently
with high throughput and that satisfies linearizability. Though our construction
is one of our main contributions, we also identify a variety of interesting defini-
tional and modeling issues that need to addressed to even formalize the security
of concurrent encrypted structures.

Instruction-level leakage. One of our core observations is that leakage in the
concurrent setting is quite different than leakage in the sequential setting and,
therefore, needs to be modeled differently. The observation stems from the fact
that, as discussed above, operations are really sequences of instructions and
that, in reality, leakage occurs at the instruction level and is produced little by
little with every instruction that is executed. To see this, consider the simpli-
fied version of πbas described above. Notice that during a get, the server learns

Concurrent Encrypted Multimaps 5

information piece-by-piece as it queries the dictionary. For example, if the dic-
tionary query for F (Kℓ,1, i) is successful the server learns that the length of the
tuple is at least i. And when the dictionary query fails, it finally learns the ex-
act length of the tuple. The fact that leakage really occurs at the instruction
level does not necessarily contradict the standard operation-level leakage model
[23,20] which is (implicitly) used in the sequential setting. This is because, in
the sequential setting, all the instructions of an operation are executed together
before the instructions of the next operation are started. The consequence is
that the operation-level leakage is the union of the instruction-level leakage. For
example, in πbas the operation-level get leakage is the length of the tuple which
is also the instruction-level get leakage in the sequential setting.

Schedule-dependent leakage. Another important observation is that instruction-
level leakage depends on how it is scheduled. For example, consider a πbas EMM
that stores a label pair (ℓ, v), where v = (v1, . . . , v10), and the following two
concurrent operations: an append to ℓ’s tuple and a get for ℓ. Now, consider
one schedule where the append adds the pair (F (Kℓ,1, 11), Enc(Kℓ,2, v11)) to
the underlying dictionary before the get operation queries the dictionary for
F (Kℓ,1, 11) and another schedule where the order is reversed. In the first sched-
ule, the server learns that v has size at least 11 from the dictionary query for
F (Kℓ,1, 11), whereas in the second schedule it learns that the tuple length is
exactly 111.

Adversarial schedulers. As discussed above, real-world database servers are multi-
threaded and instructions are ordered and scheduled for execution by the OS
scheduler. If the server is corrupted—which is the standard adversarial model
considered in encrypted search—then the scheduler is also corrupted and the
execution schedule of a sequence of operations will be adversarially-chosen and
because of this the observations above have important implications on the secu-
rity of encrypted structures. In particular, recall that it is standard for dynamic
encrypted structures to achieve forward privacy. Roughly speaking, forward pri-
vacy guarantees that updates to the structure cannot be correlated with previous
queries but can reveal correlations between queries and past updates. The ob-
servation that instruction-level leakage is schedule-dependent implies that, in
the presence of an adversarial scheduler, the notions of forward and backward
privacy are not meaningful. This is simply because an adversarial scheduler can
render the guarantees of forward privacy useless by controlling the schedule.
Specifically, given a sequence of queries followed by updates, forward privacy
guarantees that the updates cannot be correlated to any of the queries. But by
scheduling all the updates first followed by the queries these correlations can be
revealed. A similar issue occurs with backward privacy which, roughly speaking,
guarantees that queries do not reveal information about items that have been
previously inserted and then deleted. As in the case of forward privacy, if an
1 Note that, in this example, the ordering of the operations also impacts the leakage

at the operation level.

6 A. Agarwal et al.

adversarial scheduler re-orders the operations such that an item is inserted, then
queried and then deleted, then it can learn whether the item was inserted.

Note that, so far, we only discussed adversarial schedulers that choose fixed
schedules, i.e., in a non-adaptive manner. But a scheduler could determine a
schedule adaptively, as a function of previous instructions, their outputs and
their leakage.

Modeling instruction-level leakage. To capture instruction-level leakage and to
properly capture the interaction between adaptive schedulers and leakage, we
formalize leakage profiles in a more fine-grained manner. Specifically, we define
leakage functions as stateful functions that take as input a sequence of instruc-
tions (as opposed to a sequence of operations), a schedule for the instructions
executed so far and the next instruction to be executed. Based on these inputs,
the leakage function determines the leakage produced by the next instruction
which, in our security definition, is provided to the adaptive scheduler.

Formalizing security. We formalize the security of a concurrent multi-map en-
cryption scheme in the ideal/real-world paradigm. At a high level, in the real
world the clients and server execute the real multi-map encryption scheme oper-
ations in the presence of a semi-honest adversary that corrupts the server. In the
ideal world, the clients and server interact with an ideal concurrent multi-map
functionality. Defining this ideal functionality is challenging for the following
reasons. The ideal functionality should produce a sequence of outputs that is
consistent. There are, however, many possible consistent output sequences. We
could make the functionality produce a specific one of them but this would be
too strong and not achievable since, in the real world, the adversary controls the
scheduler and can, therefore, influence the outputs of the encrypted multi-map.
To capture this, we need to relax the functionality and allow the simulator to
provide it with information that it can use to generate an output sequence. But,
crucially, we require the functionality to abort if the simulator leads it to output
a sequence that violates consistency. This guarantees that the functionality and
the scheme always produce consistent output sequences but that the adversary
can influence which consistent output sequence it produces. As with traditional
(i.e., sequential) STE security definitions, we explicitly model leakage in our
definitions.

Another interesting feature of our definition is how adaptive adversarial
schedulers are handled. Recall that adaptive schedulers choose the next atomic
instruction to execute based on previous instructions, their results and possibly
their leakage. During simulation, this is handled by the simulator forwarding the
scheduler’s next instruction to the functionality which returns the instruction-
level leakage so that the simulation can proceed.

A new concurrent multi-map encryption scheme. We describe a linearizable
multi-map encryption scheme called TST which, as far as we know, is the first
such construction. In addition, TST achieves lock-free append operations which,
roughly speaking, means that if an append gets scheduled it will never have to

Concurrent Encrypted Multimaps 7

wait on another operation. At a very high level, the scheme works as follows.
Suppose we have n clients C1, . . . , Cn. A label ℓ’s tuple v can be split into n
sub-tuples (v1,ℓ, . . . , vn,ℓ), where vi,ℓ holds the values appended by Ci. For all
clients Ci and labels ℓ, the encrypted multi-map will store an encrypted form of
a reverse linked list listi,ℓ, where each node stores a value of vi,ℓ and a pointer
to the previous node in the list. It also stores an encrypted structure that stores
pointers to the heads of the list. To append a value vm+1 to ℓ’s tuple, Ci sends a
new node that stores vm+1 and points to the head of listi,ℓ. To retrieve ℓ’s tuple,
the server walks each listi,ℓ, for i ∈ [n], starting from their heads and returns
the nodes in ∪i∈[n]listi,ℓ. Note that, for security reasons, append operations do
not update the structure that stores the heads of the list so that structure can
store old/stale head pointers which could result in the get only returning a sub-
set of ℓ’s tuple. To address this, we augment the construction with additional
encrypted data structures that the server can use at get time to find the un-
reachable nodes (i.e., the nodes that cannot be reached from the old head). This
adds false positives to the server’s response, but the client can locally filter them
out. Additionally, the client can use the results to update the structures at the
server so that future gets have less false positives (and depending on the dis-
tribution of operations possibly none). Like many dynamic EMM constructions
[15,8,9,28,59], TST also uses lazy deletion to handle deletes, where deletions are
treated as additions with special delete markers that the client can locally use
to filter out the deleted values. The description provided here is very high level
and ignores many subtleties and technical challenges which we discuss in detail
in Section 5 and 6.

One of the main challenges in designing TST was to find a way to achieve
linearizability, security and efficiency. Traditional techniques from concurrent
data structures are designed to provide consistency and efficiency whereas tra-
ditional techniques from structured encryption are designed to achieve security
and efficiency. In our setting, we need to find ways of using, adapting and cre-
ating new techniques so that we achieve all three. Interestingly, while TST is
very different than all previous EMM constructions, it does make use of and
combine ideas from previously-known influential constructions. Specifically, it is
both a list-based scheme like the SSE-1 construction of [23] and a dictionary-
and counter-based scheme like the πbas construction of [15].

A new linearizable range dictionary. Our TST construction makes use of a plain-
text range dictionary which stores label/value pairs where the labels are integers.
In addition to get and put operations, the range dictionary also needs to support
a greater-than ℓ operation that returns the set of values associated with labels
greater than ℓ. We construct such an efficient and linearizable range dictionary
which may be of independent interest.

2 Related Work

Structured Encryption. Structured encryption was introduced by Chase and
Kamara [20] as a generalization of index-based searchable symmetric encryp-

8 A. Agarwal et al.

tion (SSE) [58,23]. The most common and important type of STE schemes are
multi-map encryption schemes which are a basic building block in the design of
sub-linear SSE schemes [23,41,15], expressive SSE schemes [13,55,29,39,38] and
encrypted databases [39,16]. STE and encrypted multi-maps have been studied
along several dimensions including dynamism [41,40,15,55,33] and I/O efficiency
[15,14,5,52,24,7,25]. The notion of forward privacy was introduced by Stefanov,
Papamanthou and Shi [60] and formally defined by Bost [8], who also proposed
the first forward-private encrypted multi-map construction. Kamara and Moataz
pointed out in [38] that the definition of [8] does not necessarily capture the in-
tuitive security guarantee of forward-privacy and suggested that it be formalized
as requiring that updates be leakage-free. Backward privacy was introduced by
Bost, Minaud and Ohrimenko [9]. Several follow up works showed how to improve
on the constructions of [9], sometimes achieving both forward and backward
privacy [30,45,9,28,59,3]. All these works focus on designing SSE/STE construc-
tions for non-concurrent settings. While these non-concurrent constructions have
several applications, concurrent constructions that allow multiple operations to
operate on the encrypted data structure simultaneously are more practical and
useful.

Multi-user schemes. Multi-user STE/SSE refers to schemes that allow multiple
clients to operate on the encrypted structure/collection. Multi-user schemes can
be single-writer multi-reader as proposed in [23], multi-writer single-reader, or
multi-writer multi-reader. As far as we know all the multi-user constructions
proposed—except for [42]—assume the server is sequential and do not support
concurrent operations.

Oblivious parallel RAMs. Oblivious parallel RAM (OPRAM) was introduced by
Boyle, Chung, and Pass [10] as a generalization of ORAM that compiles an m-
CPU PRAM program into an oblivious m-CPU PRAM. Numerous subsequent
work improved OPRAM overhead [17,18,37,22,53,19,6]. Although the notions of
parallel and concurrent computation are related, they are not the same. Parallel
computation involves executing multiple operations at the same time in order
to accelerate computationally-intensive tasks by using multiple processing units.
In contrast, concurrent computation involves executing multiple operations that
can be interleaved with one of another. This means that operations can begin,
run, and complete in any sequence and they can share resources such as memory
and processors. Our work is focused on concurrency not parallelism.

Concurrent dictionaries. Our construction makes use of linearizable dictionaries
which can be instantiated with hash tables based on closed or open addressing.
Existing solutions can be lock-based [27,47,49], partially lock-free [36,34], lock-
free [50,57,32], or wait-free [61]. Search trees can also be used to instantiate
concurrent dictionaries and there are various lock-based designs [46,11] and lock-
free linearizable implementations [62,26].

Concurrent Encrypted Multimaps 9

3 Preliminaries

Notation. The set of all binary strings of length n is denoted as {0, 1}n, and the
set of all finite binary strings as {0, 1}∗. [n] is the set of integers {1, . . . , n}. a := b
means that a is set to b. The output y of a deterministic algorithm A on input
x is denoted by y := A(x). If S is a set then x

$← S denotes sampling from S
uniformly at random. If S is a set then #S refers to its cardinality. Throughout,
k will denote the security parameter.

Cryptographic primitives. We make use of CPA-secure symmetric encryption
schemes SKE = (Gen, Enc, Dec) and pseudo-random functions (PRF) in our
construction. We denote the evaluation of a pseudo-random function F with
a key K on an input x as F (K, x). Sometimes for visual clarity, we denote
F (F (F (K, x1), x2), . . . , xn) as F [K, x1, . . . , xn]. We refer the reader to [44] for
standard notions of security for PRFs and symmetric encryption schemes.

Plaintext data structure schemes. A dictionary scheme ∆DX = (Init, Get, Put)
supports three algorithms where Init(k1, k2) initializes an empty dictionary DX
that maps labels of length k1 to values of length k2, Put(DX, ℓ, v) adds a la-
bel/value pair (ℓ, v) to DX, and Get(DX, ℓ) returns the value v associated with
label ℓ in DX. A cas-dictionary scheme ∆DX = (Init, Get, Put, CompareAndSwap) is
a dictionary scheme that supports, in addition to Get and Put, a CompareAndSwap
algorithm. CompareAndSwap(DX, ℓ, vold, vnew) compares the value of label ℓ with
vold and updates it with vnew if they are equal [51,56,54]. A range dictionary
scheme ∆RDX = (Init, Put, GetGreater) is a dictionary scheme that supports
GetGreater instead of Get. In particular, the GetGreater(RDX, ℓ) algorithm re-
turns all the values in the dictionary that have labels ℓ′ greater than ℓ. Finally,
∆CTR = (Init, FetchAndInc) is a counter scheme where Init(v) initializes a counter
countg with value v, and FetchAndInc(countg) returns the current value of countg
and increments the counter by 1.

Operations. We define an operation op as a tuple (opid, name, inp, cid) which
includes a unique operation id, the operation’s name, its input, and the id of
the client who issued the operation. For example, op = (opid, Get, ℓ, i) is a get
operation that takes a label ℓ as its input and is issued by client Ci.

Atomic instructions. We assume that each operation op consists of atomic in-
structions (ins1, . . . , insλ), which are instructions that guarantee uninterrupted
access and updates of shared single-word variables. We use op.[First] and op.[Last]
to indicate the first and last atomic instruction in a sequence of atomic opera-
tions that make up an operation. We also use op.[insi] or opid.[insi] to refer to
the ith instruction of operation op.

Execution schedules. We assume the server has a scheduler that is responsible for
scheduling operations on the CPU. Given a set of operations Ω = {op1, . . . , opλ},
the execution process is as follows: (1) the scheduler schedules an operation; (2)

10 A. Agarwal et al.

the CPU executes the next atomic instruction of the scheduled operation; and (3)
then the scheduler de-schedules the operation. After that, the scheduler schedules
another operation, the CPU which carries out the next atomic instruction of that
operation, and so on. This process defines an execution schedule, schedΩ , for a
set of operations Ω.

It is important to note that the next atomic instruction of the scheduled
operation is not necessarily next atomic instruction in the literal code of the op-
eration. Instead, it is determined by accounting for branches and other control
flow constructs. Consequently, two get operations with identical code but differ-
ent inputs can follow entirely different execution paths due to different inputs
and can, therefore, have different execution schedules.

We define a schedule schedΩ for a set of operations Ω as a prefix of the
following sequence: (opid1.[First], . . . , opid1.[Last]) × . . . × (opidλ.[First], . . . ,
opidλ.[Last]), where the × operator denotes the the interleaving of executions.
We stress that execution schedules need not be complete in the sense that they
do not have to contain all the atomic instructions of an operation. Intuitively,
they represent the execution that has happened so far on the machine. Given
an operation set Ω, and a schedule schedΩ , we partition Ω into two disjoint sets
Ωf∪Ωp, where Ωf is the set of operations that are completed, and Ωp is the set of
operations that are partially completed. Formally an operation (opid, ⋆, ⋆, ⋆) ∈ Ω
is in Ωf if (opid.[First], . . . , opid.[Last]) ∈ schedΩ , otherwise it is in Ωp.

Concurrent schedules. Given a schedule schedΩ , we write timesched(op.[ins]) to
refer to the logical time the instruction op.[ins] is executed. For instance, for an
operation op, timesched(op.[First]) and timesched(op.[Last]) refer to the start and
end times of the operation. If op.[Last] /∈ schedΩ , then timesched(op.[Last]) =∞.
A schedule schedΩ is called concurrent if there exists a time when two operations
are “active”. Formally, there exist a time t, such that timesched(op.[First]) ≤ t ≤
timesched(op.[Last]) and that timesched(op′.[First]) ≤ t ≤ timesched(op′.[Last]).
We say that op and op′ are concurrent if this condition is true.

Execution histories. An execution history is a record of the operations executed
on a data structure, when they were executed, and their outputs were. We model
it as a triple H = (Ω, schedΩ , outΩf

), where schedΩ is the execution schedule of
the operations in Ω and outΩf

is an output function that assigns an output to
finished operations Ωf ⊆ Ω.

Correctness of concurrent data structures. A concurrent data structure is a data
structure that allows multiple operations to be executed simultaneously with-
out violating its correctness. The correctness of a concurrent data structure is
formalized by a notion of consistency which, intuitively, guarantees that the op-
erations executed on a data structure should always appear to be executed one
after the other, even if their executions were interleaved. For instance, a get op-
eration on a multi-map should output all the values that appear to have been
added by “previous” appends, without including any of the values that appear
to have been added by “later” appends. We capture the notion of sequential

Concurrent Encrypted Multimaps 11

correctness with a function called exec. It takes as input a total order seqΩ

of operations Ω, an operation op ∈ Ω, and returns the output of op as if the
operations were executed in the order of seqΩ . In the particular case of a multi-
map, exec is defined as follows. If op = (opid, Get, ℓ, ⋆), exec(seqΩ , op) = {v :
(opid′, Append, (ℓ, v), ⋆) ∈ Ω and seqΩ orders opid′ before opid}. Various consis-
tency notions define how operations in Ω can be ordered in relation to their
original ordering in schedΩ , determining what is considered “previous” or “later”.
Stricter consistency results in fewer possible orderings, while weaker consistency
allows for more. We formalize this intuition in the definition in the definition
below where we use a predicate χ to capture constraints on how operations can
be ordered. Given a schedule schedΩ and a sequential order seqΩ , it outputs 1 if
seqΩ orders certain operation pairs in the same way as schedΩ , and 0 otherwise.

Definition 1 (χ-consistent histories). A history H = (Ω, schedΩ , outΩf
) is

χ-consistent if there exists a sequence seqΩ such that:

χ(schedΩ , seqΩ) = 1 and ∀ op ∈ Ωf , exec(seqΩ , op) = outΩf
(op),

where Ωf ⊆ Ω is the set of completed operations, and exec is a function that
assigns op an output that conforms to the sequential correctness of the data
structure when executing operations in Ω in the sequential order seqΩ.

We say that a concurrent data structure is called χ-consistent, if all its execution
histories are χ-consistent.

Linearizability. Linearizability [35] is a popular and strong consistency notion
that requires operations to preserve their real-time ordering, i.e, if op completes
before operation op′ begins, then op should take effect before op. Said differently,
it implies that operations should appear to be interleaved at the granularity of
complete operations, and the order of non-overlapping operations is preserved.
We formally define this notion below.

Definition 2 (Linearizability). An execution history H = (Ω, schedΩ , outΩf
)

is linearizable if the two conditions below are verified:

1. (span membership): for each operation op ∈ Ω, there exists a point in time
linp(op) ∈ R, called its linearization point, such that

timesched(op.[First]) ≤ linp(op) ≤ timesched(op.[Last])

2. (correctness): for all op ∈ Ωf , exec(seqlinp
Ω , op) = outΩ(op), where seqlinp

Ω

is created from the linearization points as follows. Let op and op′ be two
operations in Ω and let opid and opid′ be their operation ids. If linp(op) <

linp(op′), then order opid before opid′ in seqlinp
Ω .

Intuitively, the linearization point of an operation captures the instant when the
operation appears to have taken effect. For example, the linearization point of
an append operation is the point in its execution before which its value was not
in the multi-map but after which it definitely is.

12 A. Agarwal et al.

Progress guarantees. The concept of termination is more complicated in concur-
rent execution than in sequential execution because an operation’s completion
depends not only on its own execution but also on the execution of other op-
erations. For instance, an operation that is waiting on a lock cannot proceed
until the operation that holds the lock releases it. Progress guarantees define
conditions under which an operation is ensured to complete. These guarantees
are broadly classified as non-blocking and blocking, where the former allows
other operations to proceed even if one operation is delayed, while the latter
does not. Non-blocking guarantees are further classified into wait-freedom and
lock-freedom. An operation is considered wait-free if its executions complete in a
finite number of scheduler steps. In contrast, an operation is lock-free if it guar-
antees that some operation call will finish in a finite number of scheduler steps,
even if not all calls will. Similarly, blocking guarantees are further classified into
starvation-freedom and deadlock-freedom. An operation is starvation-free if its
executions can make progress provided that the locks are not held infinitely by
the other executions. On the other hand, an operation is deadlock-free if some
call will make progress.

4 Definitions

Structured encryption (STE) was introduced in [20] as a generalization of index-
based2 SSE schemes [23]. The notion of SSE was introduced in [58] and for-
malized in [23]. There are several forms of structured encryption. The original
definition of [20] considered schemes that encrypt both a structure and a set of
associated data items (e.g., documents, emails, user profiles etc.). In [21], the
authors also describe structure-only schemes which only encrypt structures. One
can also distinguish between response-hiding and response-revealing schemes: the
former reveal the response to queries whereas the latter do not.

Definition 3 (Append-only multi-map encryption scheme). A response-
hiding multi-client append-only multi-map encryption scheme ΣMM = (Init, Append,
Get) consists of three two-party protocols that are executed by n clients C1, . . . Cn

and a server S and work as follows:

– (K1, st1; . . . ; Kn, stn; EMM)← InitC1,...,Cn,S(1k; . . . ; 1k; 1k): is a probabilistic
algorithm that takes as input from the clients and server a security parameter
1k. It outputs to a client Ci a key Ki and state sti and to the server an
encrypted multi-map EMM;

– (st′
i; EMM′)← AppendCi,S(Ki, sti, (ℓ, v); EMM): takes as input from the client

its key Ki and state sti and a label/value pair (ℓ, v); and from the server an
encrypted multi-map EMM. It outputs to the client an updated state st′

i and
to the server an updated encrypted multi-map EMM′;

– (st′
i, v;⊥) ← GetCi,S(Ki, sti, ℓ; EMM): takes as input from the client its key

Ki and state sti and a label ℓ; and from the server an encrypted multi-map
2 In the literature structure-based schemes are also called index-based schemes.

Concurrent Encrypted Multimaps 13

EMM. It outputs to the client a (possibly) updated state st′
i and a tuple v

and to the server ⊥;

We stress that all the protocols (except the Init) can be executed by many clients
concurrently. For parameters θ, λ ∈ N≥1, we use LMM = {0, 1}θ to denote the
label space and VMM = {0, 1}λ to denote the value space of the multi-map.

4.1 Security Definition

We now turn to formalizing the security of a concurrent multi-map encryption
scheme. We do this by combining the definitional approaches used in secure
multi-party computation [12] and in structured encryption [23,20]. The secu-
rity of multi-party protocols is generally formalized using the ideal/real-world
paradigm. To capture the fact that a protocol could leak information to the ad-
versary, we parameterize the definition with a leakage profile that consists of a
leakage function L that captures the information leaked by the execution of the
operations.

Adversarial model. In this work, we consider semi-honest adversaries that cor-
rupt the server and, therefore, see all its stored data, randomness, client op-
erations, and shared memory instructions. Furthermore, we assume that the
adversary has control over the scheduler and can determine which atomic in-
struction is executed at any given time. This implies that the adversary selects
a schedule schedΩ for a given operation set Ω.

The real-world execution. The real-world experiment is executed between a set
of n clients C1, . . . , Cn, a server S, an environment Z and an adversary A. Given
z ∈ {0, 1}∗, the environment Z sends a message to the adversary A to corrupt
the server S. The clients and the server then execute ΣCMM.Init(1k). Z then
adaptively chooses a polynomial number of operations (op1, . . . , opq), where opj

is either a (Get, ℓ, i) tuple or a (Append, (ℓ, v), i) tuple. For all j ∈ [q], Z sends opj

to client Ci. If opj is a get operation Ci executes ΣCMM.Get with the server but
if it is an append operation, Ci executes ΣCMM.Append. The adversary also com-
municates with the environment throughout the run of the experiment. Since the
adversary controls the scheduler and also communicates with the environment,
A and Z decide how to schedule operations. When an operation opj finishes,
the server returns the response to the right client Ci which, in turn, sends it to
the environment Z. After all the operations are executed, the adversary A sends
a message m to Z who returns a bit that is output by the experiment. We let
RealA,Z(k) be the random variable denoting Z’s output bit.

The ideal-world experiment. The experiment is executed between a set of n
dummy clients C1, . . . , Cn, an environment Z and a simulator Sim, where the
environment and the simulator can communicate at any point in the experiment.
Each party also has access to the ideal functionality Fχ,L

CMM. Given z ∈ {0, 1}∗,
Z sends a message to the simulator Sim to corrupt the simulated server S. Z

14 A. Agarwal et al.

then adaptively chooses a polynomial number of operations (op1, . . . , opq), where
opj is either a (Get, ℓ, i) tuple or an (Append, (ℓ, v), i) tuple. For all j ∈ [q], Z
sends opj to a dummy client Ci which forwards to it to the functionality Fχ,L

CMM.
Upon receiving a message the functionality executes its prescribed procedure
from Fig 1 with simulator Sim. When a dummy client receives an output from
the functionality, it forwards it to Z. In the end, Sim computes a message m
from its view and sends it to Z. Finally, Z returns a bit that is output by the
experiment. We let IdealSim,Z(k) be the random variable denoting Z’s output
bit.

Definition 4 ((χ,L)-security). We say that a concurrent encrypted multi-map
scheme ΣMM = (Init, Get, Append) is (χ,L)-secure, if for all ppt adversaries A,
and all ppt environments Z, there exists a ppt simulator Sim such that for all
z ∈ {0, 1}∗, |Pr[RealA,Z(k) = 1]− Pr[IdealSim,Z(k) = 1]| ≤ negl(k).

Note that in both experiments, the environment can send an operation to any
client at any time so there can be multiple operations executed concurrently at
the server.

4.2 An Ideal Concurrent Multi-Map Functionality

Our ideal functionality captures all the properties of a secure concurrent multi-
map, in particular, its consistency and security guarantees.

Capturing consistency in the ideal functionality is challenging. We begin by dis-
cussing two challenges that arise in capturing the consistency guarantees of a
concurrent multi-map in the ideal/real-world paradigm. The first challenge is
that operations take time to execute and do not finish instantaneously in the
real world. To address this, we need to create an ideal functionality that can
account for this behavior. One option is to allow the functionality to choose an
arbitrary time to return output. However, this approach is problematic because
in the real world, the adversary controls when an operation ends, and there is
no way for the functionality to know this. The second challenge is determining
the outputs that the functionality should produce for operations. We want to
achieve χ-consistency, but there are multiple possible output sequences that can
satisfy this. Creating a functionality that chooses a specific sequence is also not
achievable because the scheduler can influence the outputs by forcing a specific
interleaving of atomic instructions. To address these challenges, we relax the
functionality and allow the simulator (i.e., the ideal adversary) to influence the
functionality’s output. When an operation ends, the simulator gives the func-
tionality a sequential order of operations that it uses to compute the operation’s
output.

The functionality overview. We formally describe the ideal concurrent multi-
map functionality Fχ,L

CMM in Figure 1. The functionality stores two operation sets
Ω and Ωf , where Ω stores all the client operations, and Ωf ⊆ Ω stores all the

Concurrent Encrypted Multimaps 15

completed operations. Both the sets start out as empty sets. The functionality
also stores a schedule sched of operations, and an output function out, both
of which it builds over time. When the functionality receives an operation op
from a client Ci, the functionality assigns the operation a unique opid, adds the
operation to Ω, and sends to the simulator the operation id, its name, and the
client id. Note that our functionality implicitly leaks the type of the operation,
and the client making that operation. As previously discussed, in concurrent
settings, the scheduler selects the next instruction to be executed. This means
that the simulator must receive information on the leakages at the instruction
level. In order to obtain the leakages of an operation op’s instruction ins, the
simulator sends a message (opid, ins) to the functionality to obtain its leakage.
The functionality first checks its local schedule sched to confirm if ins is the next
instruction that needs to be executed for op. If yes, it sends L(Ω, sched, opid.ins)
to the simulator and updates the schedule sched with opid.ins. Otherwise, it
aborts.

Moreover, when opid.ins is the last instruction for operation op, the simu-
lator additionally sends the functionality a sequential order seq of operations.
Recall that we want to capture the notion of χ-consistency in the functionality.
Therefore, the functionality makes the checks required by the definition of χ
consistency. In particular, it checks if seq is sequential, if χ(sched, seq) = 1, and
if for all the operations op′ ∈ Ωf completed so far, if exec(seq, op′) = out(op′). If
seq passes all the checks, the functionality accepts seq, else it aborts. It finally
computes the output r = exec(seq, op) of the operation just completed and re-
turns it to Ci. Finally, it updates its set of completed operations Ωf and adds
op to it.

5 A (Plaintext) Linearizable Multi-Map

In this section, we describe a linearizable multi-client plaintext multi-map. This
structure underlies our main multi-map encryption scheme TST and will make
its description in Section 6 easier to understand. We start with a straw-man
construction and gradually build towards a final construction while highlighting
various security, efficiency and concurrency considerations.

5.1 An Initial Design

We construct a multi-client plaintext multi-map data structure MM = (dDX,
cDX1, . . . , cDXn) that is composed of a data dictionary dDX and n checkpoint
dictionaries cDXi, where n is the number of clients. For simplicity, we assume the
structure is accessed by a fixed number of clients, C1, . . . , Cn, but note that the
structure can handle a variable number of clients. The data dictionary dDX will
store labels and tuple values and the checkpoint dictionaries will store meta-data
necessary for correctness and fast get operations.

Intuitively, the structure stores a reverse linked list listi,ℓ for each client Ci

that inserts a label/tuple pair (ℓ, vi). The list listi,ℓ = (nodei,ℓ,1, . . . , nodei,ℓ,m) is

16 A. Agarwal et al.

Functionality Fχ,L
CMM

The functionality stores sets Ω and Ωf both initialized as empty sets. It
also stores a schedule sched initialized as empty and a dictionary out that
stores the outputs of operations.

– upon receiving an operation name name ∈ {Get, Append} and its input
inp from a client Ci, the functionality
1. generates a unique opid for the operation
2. sets op := (opid, name, inp, i)
3. adds op to Ω
4. sends (opid, name, i) to the simulator Sim

– upon receiving (id, ins, {seq, ⊥}) from the simulator Sim, the function-
ality
1. lets op := (opid, name, inp, i) be the operation from Ω where opid =

id
2. uses sched to check if opid.ins is the next instruction to be executed

for op; if not, it aborts
3. sends L(Ω, sched, opid.ins) to the simulator Sim
4. concatenates opid.ins to the schedule, i.e., sched = sched ◦ opid.ins
5. if (ins = Last), it:

(a) makes the following checks, and if any of them fails, it aborts
i. checks if χ(sched, seq) = 1

ii. checks if for all op′ ∈ Ωf , exec(seq, op′) = out(op′)
(b) computes r := exec(seq, op)
(c) sets out(op) := r
(d) updates Ωf := Ωf ∪ {op}

Fig. 1. The concurrent multi-map functionality parameterized with consistency guar-
antee χ and a leakage function L.

composed of m = #vi nodes nodei,ℓ,j = (vj , addri,ℓ,j−1), each of which stores a
value vj ∈ vi and a pointer addri,ℓ,j−1 to the previous node, where addri,ℓ,0 = ⊥.
The address of listi,ℓ’s head is then stored in Ci’s checkpoint dictionary cDXi.
Storing label/tuple pairs using per-client lists has several advantages, one of
which is that it enables concurrent appends without needing clients to syn-
chronize on their state. Typically, nodes of the lists are stored in memory and
pointers are memory addresses but, in our case, we store them in the data dic-
tionary dDX so addresses and pointers are dDX labels. Specifically, each node
nodei,ℓ,j = (vj , addri,ℓ,j−1) is stored in dDX by setting dDX [addri,ℓ,j] := nodei,ℓ,j ,
where addri,ℓ,j is a k-bit string chosen uniformly at random. The address addri,ℓ,m

of listi,ℓ’s head is then stored in Ci’s checkpoint dictionary by setting cDXi[ℓ] :=
addri,ℓ,m. Throughout, we will sometimes refer to the nodes of listi,ℓ as (i, ℓ)-
nodes, to the nodes in dDX inserted by client Ci as i-nodes and to the nodes in
dDX that hold ℓ’s values as ℓ-nodes.

Get. To get the tuple associated with a label ℓ, a client Ci sends ℓ to the server.
The latter then retrieves the head address of every ℓ-list and recovers the values

Concurrent Encrypted Multimaps 17

from those lists. More precisely, for all i ∈ [n], the server computes addri,ℓ,m :=
cDXi[ℓ] and nodei,ℓ,m := dDX[addri,ℓ,m], parses nodei,ℓ,m as (vm, addri,ℓ,m−1),
adds vm to the response r, and then performs the same steps for the node at
address addri,ℓ,m−1 until it reaches a node such that addri,ℓ,j−1 = ⊥.

Append. To append a value vm+1 from client Ci to the tuple of a label ℓ, the
client sends (ℓ, vm+1) to the server. The latter computes addri,ℓ,m := cDXi[ℓ],
creates a new node nodei,ℓ,m+1 = (vm+1, addri,ℓ,m), samples a new dDX label
addri,ℓ,m+1

$← {0, 1}k and inserts the node into the data dictionary by setting
dDX[addri,ℓ,m+1] := nodei,ℓ,m+1. It then updates Ci’s checkpoint dictionary by
setting cDXi[ℓ] := addri,ℓ,m+1.

5.2 Towards a Secure Design

The structure described above is efficient and is straightforward to encrypt us-
ing any of a variety of practical dictionary encryption schemes. The resulting
encrypted structure would also be efficient but it would not achieve the level of
security we want. To see why, consider the case where Ci performs an append
on ℓ twice. Even if the multi-map is encrypted, the server would learn that Ci

appended to the same label twice because the two operations cause the server to
set cDXi[ℓ] twice. These append-to-append correlations are problematic because
they reveal the length of the tuple already at append time. Another issue is that
this approach also reveals get-to-append correlations which can be exploited
using adaptive injection attacks [63].

Leakage-free appends through client state. To address this, we want a solution
with no append leakage at all. This could be achieved by storing and access-
ing the checkpoint dictionaries using black-box ORAM simulation or by using a
leakage-free dictionary [43,31], but this would result in high overhead and mul-
tiple rounds of interaction. Instead, we take a different approach and modify the
append operation as follows. Specifically, appends will store the new node in the
data dictionary dDX but will not update the checkpoint dictionaries. We also
require the clients to store local state that maps labels to the head addresses
of their own lists (but not of other clients’ lists). During an append operation
for (ℓ, vm+1), the client Ci sends to the server a pair (addri,ℓ,m+1, nodei,ℓ,m+1),
where addri,ℓ,m+1

$← {0, 1}k and nodei,ℓ,m+1 := (vm+1, addri,ℓ,m) and addri,ℓ,m

is retrieved from its local state. The client then updates its local state to map
ℓ to addri,ℓ,m+1 and the server inserts the new node in the data dictionary dDX
by setting dDX[addri,ℓ,m+1] := nodei,ℓ,m+1.

This guarantees that updates are leakage-free (modulo the fact that an ap-
pend occurred) but introduces a correctness issue for get operations. Specifically,
the addresses stored in the checkpoint dictionaries can be out of date in the sense
that they do not necessarily point to the heads of the lists anymore. This, in
turn, means that there are nodes in each list that could be unreachable and not
returned by get operations. Throughout, we will refer to the addresses stored in

18 A. Agarwal et al.

the checkpoint dictionaries as checkpoint addresses and to the nodes pointed to
by those addresses as checkpoint nodes and recall that, with the current design,
checkpoint nodes are not necessarily heads.

Scanning and filtering. One way to solve the correctness issue above is to store
the label ℓ in the nodes so that they now have the form (vj , addri,ℓ,j−1, ℓ) instead
of (vj , addri,ℓ,j−1) and to change the get operations to work in two phases as
follows. The first phase works as before; that is, for all i ∈ [n], the server retrieves
the checkpoint address addri,ℓ,j := cDXi[ℓ] and traverses the list to recover the
values stored in the nodes. In the second phase, it recovers the unreachable nodes
by scanning all the untouched nodes in dDX (i.e, the nodes in dDX it did not
access in the first phase), checking if they hold ℓ or not and, if so, returning the
value in the node.

5.3 Towards a Secure and Efficient Design

With the changes made so far, we solved the leakage and correctness issues but
introduced non-trivial efficiency overhead. While appends remain optimal, gets
are now linear in the size of the multi-map due to the scanning step. In this
section, we show how solve this issue.

Time. We first provide an intuitive explanation of how we can address this
limitation and then show how to instantiate it concretely. Recall that the pur-
pose of the linear scan in the second phase of gets is to find the nodes that
are unreachable from the address stored in the checkpoint dictionary. Our so-
lution will be to build a new set of data structures that map labels to the
unreachable nodes so that we can replace the linear scan with an efficient data
structure query. Building such structures is possible because of the following
key observation: the nodes in the lists list1,ℓ, . . . , listn,ℓ that are unreachable
are the ones that were inserted into dDX after the checkpoint nodes. Based
on this observation we can modify the operations to work as follows. First, we
make the server include a timestamp in every node when it inserts them in
dDX during an append. The server also maintains n auxiliary range dictionaries
RDX1, . . . , RDXn such that RDXi maps timestamps to the labels/addresses of
Ci’s nodes in dDX with the associated timestamp. During a get, the server then
does the following. For all i ∈ [n], it will retrieve the ith checkpoint node by com-
puting addri,ℓ,j := cDXi[ℓ] and nodei,ℓ,j := dDX[addri,ℓ,j]. Recall that nodei,ℓ,j

now has form (vj , addri,ℓ,j−1, ℓ, timej). It then retrieves the unreachable nodes
by: (1) computing (addr1, . . . , addrp) := RDXi[timej ,∞]; (2) retrieving nodes
nodez := dDX[addrz], for z ∈ [p]; and (3) filtering out the nodes that hold ℓ.
Note that this time-based solution relies on the assumption that timestamps are
strictly increasing; that is, even if two append operations on the same label are
concurrent, the server will never assign their nodes the same timestamp and will
never assign them a timestamp smaller than any previous append. This could
possibly be achieved in practice with a clock that has high enough resolution
but we provide an instantiation that does not rely on any assumption.

Concurrent Encrypted Multimaps 19

Our approach is to implement the timestamps using a linearizable counter
countg. The linearizability of the counter guarantees that no two nodes get as-
signed the same counter and that if an append occurs before another, the former’s
counter value will be strictly smaller than the latter’s. So nodes now have the
form nodei,ℓ,j = (vj , addri,ℓ,j−1, ℓ, count) and the range dictionaries RDXi map
counter values to the addresses of Ci’s nodes in dDX that have that counter. We
denote the counter of a node nodei,ℓ,j as counti,ℓ,j .

Updating the checkpoint dictionaries. Up to this point, our solution is correct
(i.e., the unreachable nodes are now returned), sub-linear (i.e., we do not need to
scan anymore) but we can still improve it. Notice that the efficiency of gets now
depends on the number of nodes inserted in dDX since the checkpoint node. It
follows then that the more up to date the checkpoint dictionaries are the better.
To achieve this, we update the checkpoint dictionaries during get operations (as
opposed to append operations). More precisely, at the end of a get the server
returns the reachable nodes of list1,ℓ through listn,ℓ, and all the nodes inserted
after the ith checkpoint node together with their addresses. The client then
parses this set of nodes and finds, for all i ∈ [n], the (i, ℓ)-nodes with the highest
counter. Note that these nodes are the heads of the lists. The client returns
the heads together with their addresses to the server who can now update the
checkpoint dictionaries.

5.4 Towards an Optimal Design
The construction so far has optimal append, a single round of interaction, opti-
mal storage overhead, but the efficiency of gets is

#MM[ℓ] +
∑
i∈[n]

∑
ℓ′ ̸=ℓ

#listi,ℓ′ [count ≥ ci,ℓ] = O

(
#MM[ℓ] +

∑
ℓ′ ̸=ℓ

#listℓ′ [count ≥ min
i∈[n]

ci,ℓ]
)

where ci,ℓ = chkcounti,ℓ is the counter of the (i, ℓ) checkpoint node, listℓ′ =
∪i∈[n]listi,ℓ′ , and list[cond] is the set of nodes in the list that satisfy the condition
specified by cond. Notice that the second term in the get complexity depends
on the number of non-ℓ-nodes inserted, where ℓ is the queried label. For certain
workloads this can lead to non-trivial overhead so we show how to avoid it.

Skipping. To solve the issue above, we add n skip dictionaries skDX1, . . . , skDXn

such that skDXi maps a label ℓ to the time when an i-node was inserted last, i.e,
the largest counter in an i-node. We will refer to the counters stored in skDXi

as skip counters. Recall that previously, during the second phase of a get the
server would query the range dictionaries RDXi for all i-nodes with counters
greater than the ith checkpoint counter. Now, instead, the server queries the
range dictionaries for all i-nodes with counters greater than the ith skip counter.
Similar to the checkpoint dictionaries, the skip dictionaries are also updated
during gets, where the client parses the set of nodes it retrieves from the server
and finds for i ∈ [n], the i-nodes with the highest counter. The client returns the
counters of these nodes to the server who then updates the skip dictionaries.

20 A. Agarwal et al.

Efficiency. With the changes described, the complexity of appends, the round
complexity and the storage complexity remain the same, whereas the complexity
of gets is

#MM[ℓ] +
∑
i∈[n]

∑
ℓ′ ̸=ℓ

#listi,ℓ′ [count ≥ si,ℓ] = O

(
#MM[ℓ] +

∑
ℓ′ ̸=ℓ

#listℓ′ [count ≥ min
i∈[n]

si,ℓ]
)

where si,ℓ = skcounti,ℓ is the (i, ℓ) skip counter. Observe that for all ℓ ∈ LMM,

min
i∈[n]

skcounti,ℓ ≥ min
i∈[n]

chkcounti,ℓ,

since skcounti,ℓ ≥ maxℓ∈LMM chkcounti,ℓ.

Note. We slightly modify the gets to perform the label-based filtering at the
client instead of doing it at the server. While this modification does not change
our asymptotics, it is going to be essential to describe the changes we are going
to make due to various concurrency issues. Moreover, in the final TST protocol,
we will encrypt the labels which makes server-side filtering impossible.

5.5 A Concurrent Design

So far we designed our plaintext structure without considering concurrency. We
now present several challenges that come up when the structure is accessed
concurrently. Recall that our goal is to achieve linearizability which essentially
means that the operations should appear to be interleaved at the granularity
of complete operations, and the order of non-overlapping operations should be
preserved. In simpler terms, we should be able to order the operations in a way
that a get should always output all the values added by the append operations
ordered before it. Additionally, if an operation finishes before another one starts,
the former should be ordered before the latter.

5.5.1 Need for Atomic Instructions

Consider the following scenario involving two clients C1 and C2. Suppose list1,ℓ

includes 100 nodes at addresses addr1,ℓ,1, . . . , addr1,ℓ,100 in dDX and assume the
(1, ℓ) checkpoint address is addr1,ℓ,1. If C2 executes a get on label ℓ it retrieves
the reachable nodes of list1,ℓ and list2,ℓ as well as the nodes inserted after the
(2, ℓ) skip counter. C2 will then determine that node1,ℓ,100 is the head of list1,ℓ

and will send addr1,ℓ,100 to the server so that it can update the checkpoint dic-
tionary cDX1. Now assume that before the server updates cDX1[ℓ], the scheduler
pauses the execution of the get operation and that C1 executes a hundred ap-
pends followed by one get all on label ℓ. The one hundred appends result in
the creation of one hundred nodes with addresses addr1,ℓ,101, . . . , addr1,ℓ,200 and
the get operation results in C1 sending the server a new checkpoint address
addr1,200 which the server will use to update the checkpoint dictionary cDX1.
If the scheduler resumes C2’s get operation at this moment, the server will set

Concurrent Encrypted Multimaps 21

cDX1[ℓ] to addr1,ℓ,100 which is clearly wrong. For simplicity, we do not describe
the updates of the skip dictionaries, but the same issue applies, where it is pos-
sible to overwrite the correct skip counter value count1,ℓ,200 with an out-of-date
value count1,ℓ,100.

As seen, with our current design it is possible to update the checkpoint
dictionaries with addresses that are out of date and the consequence is that the
next get operation for ℓ will return incorrect results. This is the case because the
server will first retrieve the old checkpoint address addr1,ℓ,100 from cDX1, then
recover the reachable nodes of list1,ℓ from dDX starting at addr1,100. It will then
retrieve the skip counter count1,ℓ,200 from the skip dictionary skDX1 and query
the range dictionary RDX1 which will return the addresses that were inserted
after count1,ℓ,200. The server then uses these addresses to recover the remaining
nodes from dDX but this set of nodes is incorrect because it is missing the nodes
with addresses between addr1,ℓ,101 and addr1,ℓ,200.

Efficiency issue. Now consider the scenario above except that the skip dictionar-
ies are the ones updated with out-of-date counters instead of the checkpoint dic-
tionaries. During a get on label ℓ, the server retrieves an old counter count1,ℓ,100
from the skip dictionary instead of the correct counter count1,ℓ,200. Given this
counter, the server will query the range dictionary and recover the addresses
added after count1,ℓ,100. But notice that the server already retrieved the nodes
between addr1,ℓ,1 and addr1,ℓ,200 since the checkpoint dictionary was updated
correctly so the server could potentially retrieve a large number of unnecessary
nodes just to filter them out at the end. In particular, the structure could have
get efficiency

#MM[ℓ] +
∑
i∈[n]

∑
ℓ′ ̸=ℓ

#listi,ℓ′ [count ≥ acounti]

where acounti is the counter value of the latest i-node at the time of an arbitrar-
ily old get operation—instead of being exactly at the time of the previous get
operation as intended. In the worst case, the efficiency of the get can be linear
in the size of the multi-map.

Compare and swap operations. The problem that leads to the issues above is
that the time at which the server was supposed to update the checkpoint dictio-
nary cDX1 for C2’s get on ℓ and the time at which the server actually updates
it are distinct and during this interval of time the server receives and executes
additional append and get operations from C1. One possible solution is to make
the server check whether the to-be-written checkpoint address is the latest one
and only update the checkpoint dictionary if it is still so. This approach, how-
ever, suffers from the same issue above since the time between the check and the
actual write are distinct. We solve this by making use of atomic operations and,
specifically, dictionaries that support CompareAndSwap operations. These are dic-
tionaries which, at a high level, execute a comparison and an update operation in
one atomic step. The atomicity guarantees that there is no interruption between
the comparison and the update so the approach mentioned above will solve the
problem. We provide more details below.

22 A. Agarwal et al.

The get operation now works the same as before, except for how the server
updates the checkpoint and the skip dictionaries. We focus on the case of the
checkpoint dictionaries but the same modifications apply to the skip dictionar-
ies. When the server receives a new checkpoint address addr⋆

ℓ , it first retrieves
node⋆

ℓ := dDX[addr⋆
ℓ]. It then parses node⋆

ℓ as (v⋆, prevAddr⋆, ℓ, count⋆) and re-
trieves the node at the current checkpoint address addr×

ℓ which it parses as
(v×, prevAddr×, ℓ, count×). If count× < count⋆, the server executes

CompareAndSwap(dDX, ℓ, addr×
ℓ , addr⋆

ℓ).

If the operation fails, there was an update to the checkpoint dictionary so the
server retries all the previous steps until CompareAndSwap is successful or until
the current checkpoint address corresponds to a node that has a higher counter
than the new one, i.e., when count⋆ < count×. We refer to dictionaries that
support cas operations as cas-dictionaries and denote such schemes as ∆DX.

5.5.2 Need for Locking

Recall that our goal is to design a linearizable encrypted multi-map which means
that we need to ensure that all possible execution histories are linearizable. In
the following, we show that our construction so far is not linearizable which
leads to situations in which concurrent gets for the same label have incoherent
responses; that is, neither is a subset of the other.

First, we introduce some useful terminology. Consider an append and get
operation on two possibly distinct labels ℓ and ℓ′, respectively, and let nodeℓ be
the node inserted into the data dictionary by the append operation. We say that
the get sees the append if the client who initiated the get on ℓ′ retrieves nodeℓ.
Recall that as part of a get, a client retrieves all the nodes that are reachable
through the checkpoint dictionaries and the nodes with addresses returned by
the range queries on the range dictionaries RDXi, for i ∈ [n]. Moreover, we say
that the get outputs the append if the get outputs the value of the node that
was inserted by the append operation. Note that it is possible for a get to see
an append but to not output it. This can occur due to the client-side filtering
step when the non-ℓ nodes.

Why the structure is not linearizable. Assume there are four clients C1, . . . , C4
and let get1,ℓ and get2,ℓ be two concurrent gets on label ℓ initiated by C1 and
C2, respectively. For this example, we solely focus on the accesses to the range
dictionaries. In particular, consider the part where get1,ℓ and get2,ℓ access the
range dictionaries RDX3 and RDX4 corresponding to C3 and C4 in the following
order: first, get1,ℓ accesses RDX3, then get2,ℓ accesses RDX3 and RDX4 and,
finally, get1,ℓ accesses RDX4. We now show that the responses of the two gets
are incoherent which breaks linearizability. In the example above, get2,ℓ accesses
RDX3 after get1,ℓ so it is possible that get2,ℓ sees and outputs appends from
C3 that get1,ℓ does not see. This could happen, for instance, if C3 executes
an append after get1,ℓ finishes reading RDX3. Similarly, since get1,ℓ reads RDX4

Concurrent Encrypted Multimaps 23

after get2,ℓ, it could see and output appends from C4 that get2,ℓ does not see.
Therefore, in this execution there are appends that one get will output but that
the other does not. However, for linearization we must be able to order the two
gets such that the second get outputs (at least) the responses of the first get.
Since neither get1,ℓ nor get2,ℓ have responses that are a superset of the other, they
cannot be ordered appropriately and, therefore, the execution is not linearizable.

Coarse-grained locking. The reason the outputs of the gets do not have the
superset structure required for linearizability is that they do not synchronize on
their access to the range dictionaries. In particular, the concurrent gets can access
the range dictionaries in an interleaved manner which leads to the incoherent
outputs described above. To synchronize the gets’ accesses, we could wrap all
the range dictionaries under one big lock and require the gets to acquire the
lock before accessing them. This would solve the issue since there can be no
interleaved accesses but now a get might need to wait until the lock is released
by another concurrent get which can greatly decrease throughput.

Hand-over-hand locking. Instead of using coarse-grained locking, we solve the
interleaving problem using a more granular form of locking called hand-over-
hand locking. More precisely, given two get operations get1,ℓ and get2,ℓ on the
same label ℓ, if get1,ℓ accesses RDXi before get2,ℓ, we need to ensure that get1,ℓ

accesses RDXi+1 before get2,ℓ does, and this has to hold for all i ∈ [n − 1].
Accessing the range dictionaries prevents any form of interleaving and can be
achieved as follows. Instead of a single monolithic lock, we use a series of locks
rLock1, . . . , rLockn, one per range dictionary. When a get acquires rLocki it then
queries RDXi but only releases the lock when it acquires the next lock RDXi+1.
Hand-over-hand locking leads to much better throughput.

5.5.3 Synchronizing the Gets and Appends

So far, we focused on the various synchronization issues of concurrent get op-
erations and showed how to extend our structure with atomic instructions and
hand-over-hand locking. We now highlight other synchronization issues between
get and append operations which can also result in non-linearizable execution
histories. Consider three clients C1, C2 and C3 such that C3 executes get3,ℓ

which queries RDX1. After accessing RDX1 but before accessing RDX2, C3’s get
is paused and C1 executes an append append1,ℓ followed by append2,ℓ executed
by C2. After the two appends, server resumes C3’s get and accesses RDX2 where
it sees and outputs append2,ℓ but not append1,ℓ since it did not see it at the time
it queried RDX1. The execution history in this example is not linearizable. To
see why, observe that even though append1,ℓ precedes append2,ℓ, the get outputs
append2,ℓ but not append1,ℓ which violates the superset structure necessary for
linearizability.

Using counters to synchronize. The problem above is due to the fact that the
get and append operations are not synchronizing their accesses to the range

24 A. Agarwal et al.

dictionaries. More concretely, the gets have no way of knowing if they missed an
append operation in a range dictionary that they have already read. Similarly
to the previous problem, this issue can be solved with coarse-grained locking;
specifically, by requiring that every append and get acquire a lock on all the
range dictionaries. However, as discussed, this approach would affect throughput.
Instead, we synchronize get and append operations with a counter as follows.
The idea is to use a lineralizable counter to assign a time to a get operation
in such a way that clients can distinguish between appends that are before and
after the get. Recall that the appends already make use of a lineralizable counter
countg to timestamp the nodes. We now make use of countg to generate a counter
value countget whenever a client starts executing a get. More precisely, the gets
generate a counter value right before they try to acquire the lock for RDX1. Then,
if they see an append with a larger counter than countget, they discard it and
do not output it. This avoids situations where a get outputs a later append, but
misses an earlier one because it did not see that append. With this extension,
and going back to the example above, the get operation will not see either of the
appends, append1,ℓ and append2,ℓ, which solves the linearizability issue.

Final details. The structure so far is almost complete except for one detail. The
new counter described above and the client-side filtering may some times violate
the superset structure required for linearizability.3 Now that the counter is part
of the get operation, the synchronization between the gets achieved with hand-
over-hand locking is violated and a total order can no longer be attained. To
solve this, we make a simple extension and wrap the counter countg with a lock
cLock. We also ensure that cLock and rLock1, . . . , rLockn are connected through
hand-over-hand locking in the sense that a get operation first needs to acquire
the cLock and then wait to acquire rLock1, then rLock2 and so on and so forth.

6 TST: a Linearizable Multi-Map Encryption Scheme

Our construction TST = (Init, Get, Append) makes black-box use of a lineariz-
able dictionary ∆DX = (Init, Get, Put), a linearizable cas-dictionary ∆DX = (Init,
Get, Put, CompareAndSwap), a linearizable range dictionary ∆RDX = (Init, Put,
GetGreater), a linearizable counter ∆CTR = (Init, FetchAndInc), a pseudo-random
function F : {0, 1}k × {0, 1}∗ → {0, 1}k and a symmetric encryption scheme
SKE = (Gen, Enc, Dec). Due to space limitations, the details of the scheme are
in the full version. At a high level, it works as follows.

Init. The init protocol is executed between a trusted party T, n clients C1, · · · ,
Cn and the server S. All parties input the security parameter k. First, the trusted
party T samples two keys Ke, Ks

$← {0, 1}k and sends them to all clients. For all
i ∈ [n], client Ci instantiates a state dictionary sDXi ← ∆DX.Init(θ, 2k) that will
be updated during append operations and that maps labels ℓ to a pair composed
3 This issue is very similar to the one discussed in Section 5.5 so we do not expand on

it in more detail.

Concurrent Encrypted Multimaps 25

of (1) the address of the head of the linked list listi,ℓ and (2) the key that encrypts
the head. The server S initializes a data dictionary dDX← ∆DX.Init(k, θ+λ+3k).
For all i ∈ [n], S initializes a checkpoint dictionary cDXi ← ∆DX.Init(k, k), a skip
dictionary skDXi ← ∆DX.Init(k, k), a range dictionary RDXi ← ∆RDX.Init(k, k),
and a range lock rLocki := Λ.Init(·). The server S also initializes a counter lock
cLock := Λ.Init(·). Finally, it outputs the encrypted multi-map

EMM :=
(
dDX, (cDXi)i∈[n] , (RDXi)i∈[n] , (skDXi)i∈[n] , countg, cLock, (rLocki)i∈[n]

)
.

Append. The append protocol is executed between a client Ci and the server
S. It takes as input a key K, a state st, a label ℓ and a value v from the client
and the encrypted multi-map EMM from the server. It is a single-round protocol
that works as follows:

– (client) The client first retrieves from sDXi the address dtagℓ− of the head
of listi,ℓ and its corresponding key Kℓ− . If this is the first time Ci appends a
value for ℓ, the entry in the state dictionary will be empty and the client sets
both dtagℓ− and Kℓ− to ⊥. The client then samples a new data tag dtagℓ

$←
{0, 1}k and a new key Kℓ

$← {0, 1}k and creates a new node composed of
five ciphertexts

(ctℓ, ctv, ctℓ− , ctKℓ− , ctKℓ
),

where ctℓ := EncKe(ℓ) is an encryption of the label with key Ke, ctv :=
EncKe(v) is an encryption of the value under key Ke, ctℓ− := EncKℓ

(dtagℓ−)
is an encryption of the previous data tag under the new key Kℓ, ctKℓ− :=
EncKℓ

(Kℓ−) is an encryption of previous key under the new key Kℓ, and
ctKℓ

:= EncKe
(Kℓ) is an encryption of the new key under key Ke. The client

then updates the state dictionary with the new data tag and key and finally
sends to the server an append token atk := (dtagℓ, nodei,ℓ) composed of the
new data tag along with the encrypted node.

– (server) Once the server receives the append token atk, it first retrieves
and increments the global counter count ← ∆CTR.FetchAndInc

(
countg

)
. It

then appends the counter value to the encrypted node by setting nodei,ℓ :=
(nodei,ℓ, count). The server then inserts the encrypted node nodei,ℓ in the
data dictionary at the address provided by the client by computing dDX←
∆DX.Put

(
dDX, dtag, node). It also inserts the pair (count, dtagℓ) in the range

dictionary by computing RDXi ← ∆RDX.Put
(
RDXi, count, dtag). Finally, the

server outputs the updated encrypted multi-map.

Get. The get protocol is executed between a client Ci and the server S. The
protocol takes as input a key K, a state st, a label ℓ from Ci and the encrypted
multi-map from S. The get protocol is a three-round protocol that works as
follows:

– (client round 1) The client first generates the checkpoint tag ctagℓ,j for label
ℓ and all j ∈ [n] by computing ctagℓ,j := F [Ks, ℓ, j, 1]. The client then sends

26 A. Agarwal et al.

to the server the get token gtk1 := (ctagℓ,j)j∈[n] composed of all checkpoint
tags;

– (server round 1) Once the server receives the first get token gtk1, it initial-
izes an empty set R and retrieves the data tag dtagj from the checkpoint
dictionary by computing, for all j ∈ [n], dtagj ← ∆DX.Get

(
cDXj , ctagj

)
. If

dtagj ̸= ⊥, the server retrieves the corresponding node nodej from the data
dictionary by computing nodej ← ∆DX.Get

(
dDX, dtagj

)
, and appends it to

R. Note that the absence of a tag dtagj simply means that either the jth
client never appended a value for ℓ or that the ongoing get is the first get
initiated by any client. The server sends the set R to Ci.

– (client round 2) For all j ∈ [n], the ith client parses nodej in R and decrypts
the ciphertext of the previous key by computing Kℓ−,j := DecKe

(ctKℓ−).
The client also computes the checkpoint tag ctagj as well as the skip tag
sktag by computing

ctagℓ,j := F [Ks, ℓ, j, 1] and sktagℓ,j := F [Ks, ℓ, j, 2].

The client sends to the server the second get token gtk2 composed of the old
key Kℓ−,j , the checkpoint tag ctagℓ,j and the skip tag sktagℓ,j for all j ∈ [n].

– (server round 2) Once the server receives the second get token gtk2, it initial-
izes n empty sets (Rj)j∈[n], retrieves the counter from the skip dictionaries
and the data tag from the checkpoint dictionary by computing

skcountj ← ∆DX.Get
(
skDXj , sktagℓ,j

)
and dtagj ← ∆DX.Get

(
cDXj , ctagℓ,j

)
.

The server then traverses listj,ℓ starting from the head node located at dtagj

and populates the result sets Rj , for j ∈ [n], as follows. It first retrieves the
node from the data dictionary by computing nodej ← ∆DX.Get

(
dDX, dtagj

)
,

adds the pair (dtagj , nodej) to Rj , parses the node as (ctℓ, ctv, ctℓ− , ctKℓ− ,
ctKℓ

, count), decrypts the ciphertext of the previous data tag by computing
dtag−

j := DecKℓ−,j
(ctℓ−) (which becomes the new head), and decrypts the

ciphertext of the previous key Kℓ−,j := DecKℓ−,j
(ctKℓ−) (which becomes the

new key). The server reiterates this process until it reaches a data tag dtag−
j

equal to ⊥.

The server also accesses the range dictionary to retrieve the data tags. In
particular, it first waits and acquires the counter lock cLock, retrieves and
increments the counter countGet ← ∆CTR.FetchAndInc

(
countg

)
and then un-

locks cLock. For all j ∈ [n], the server then waits and acquires the range lock
of the range dictionary rLockj , retrieves all the data tags that have a counter
larger than skcountj such that rj ← ∆RDX.GetGreater (RDXj , skcountj), re-
leases the lock, and then retrieves all the nodes from the data dictionary
located at the corresponding data tags. Note that the acquisition and re-

Concurrent Encrypted Multimaps 27

lease of the lock follows a hand-over-hand locking mechanism (refer to Sec-
tion 5.5 for more details). In particular, for all dtag ∈ rj , the server computes
node← ∆DX.Get (dDX, dtag) and adds (dtag, node) to Rj . Finally, the server
sends to the client (Rj)j∈[n] along with the get counter countGet.

– (client round 3) In this round, the client filters the nodes and only keeps
the ones that need to be part of final response. The client also computes,
for all j ∈ [n], the new head dtag⋆

j of the linked list to be stored in the
checkpoint dictionary and the most recent counter skcountj to be stored in
the skip dictionary. To filter the nodes, it initializes a set v and for all j ∈ [n],
performs the following steps. For all (dtagz, nodez) ∈ Rj , it parses the node
as (ctℓ,z, ctv,z, ctℓ−,z, ctKℓ−,z

, ctKℓ,z, countz) and decrypts the ciphertext of
the label by computing ℓz := DecKe

(ctℓ,z). If ℓz = ℓ and countz is smaller
than countGet, the client computes v := DecKe

(ctℓ,z) and adds it to v. Note
that the second condition is necessary to synchronize between the get and
the append operations which is crucial for linearizability as discussed in
Section 5.5. As a second step, client computes the new head of the linked
list, dtag⋆

j , by first identifying the node for label ℓ with the largest counter
and then setting dtag⋆

j := dtagz⋆ , chkcountj := countz⋆ , where

z⋆ := arg max
z∈Z

(countz) and Z = {z ∈ [|Rj |] : ℓz = ℓ}.

For the skip counter, the client needs to identify the node with the largest
counter irrespective of the underlying label, i.e., skcountj := maxz

(
countz

)
.

The client also computes the checkpoint tag as well as the skip tag

ctagℓ,j := F [Ks, ℓ, j, 1] and sktagℓ,j := F [Ks, ℓ, j, 2],

which are necessary to update the jth checkpoint dictionary and the jth skip
dictionary. Finally, the client sends the third get token gtk3 which is com-
posed of the checkpoint tag ctagℓ,j , the checkpoint counter chkcountj and
the new data tag dtag⋆

j which is the address of the new head of the linked
list. The token also includes of the skip counter skcountj as well as the skip
tag sktagℓ,j , for all j ∈ [n].

– (server round 3) Once the server receives the third get token, it updates
the checkpoint dictionary as well as the skip dictionary. In particular, for all
j ∈ [n], the server first retrieves the old data tag by computing dtag×

j ←
∆DX.Get

(
cDXj , ctagj

)
. It then retrieves the corresponding node from the

data dictionary from which it extracts the counter countj . The server only
updates the checkpoint dictionary if the old counter countj is strictly smaller
than the new checkpoint counter chkcountj . For this, it makes use of the com-
pare and swap atomic instruction CompareAndSwap(cDXj , ctagj , dtag×

j , dtag⋆
j),

so that cDXj [ctagj] is updated to dtag⋆
j if and only if cDXj [ctagj] = dtag×

j . If
the CompareAndSwap fails, the server performs the same steps as above until
countj ≥ chkcountj . It performs the same steps to update the skip dictio-
nary; i.e., for all j ∈ [n], it computes CompareAndSwap(skDXj , sktagj , count×

j ,

28 A. Agarwal et al.

skcountj), where count×
j is the old counter in the skip dictionary such that

count×
j ← ∆DX.Get

(
skDXj , sktagj

)
.

The client finally outputs the final response v whereas the server outputs the
updated encrypted multi-map EMM.

Making TST fully-dynamic. TST can be extended to support delete operations
using lazy deletion which has been used in many dynamic multi-map encryp-
tion constructions [15,8,9,28,59]. The lazy deletion of a label/value pair (ℓ, v) is
implemented using an append of (ℓ, v) with an additional delete marker. Dur-
ing gets, the client retrieves both pairs and uses the delete markers to filter
out the deleted values. In the context of TST, the client retrieves the nodes of
the appended and deleted pairs and filters out the deleted values as follows.
For each append node with value v, if there is a delete node with value v but
a greater counter, then it removes v from the response; otherwise, it keeps v.
The construction can be made linearizable with a minor change to the append
protocol on the server side. When a client Ci sends a new node to the server,
it uses hand-over-hand locking over cLock and rLocki to increment countg and
to update RDXi. Unfortunately, this makes appends and deletes deadlock-free
instead of lock-free. All the operations linearize at the time they lock cLock. Due
to space constraints, the proof will appear in the full version of this work. We
leave it as future work to design a linearizable lock-free fully-dynamic encrypted
multi-map.

7 Efficiency, Linearizability and Security of TST

Efficiency analysis. Due to space constraints, we defer the efficiency analysis
of TST (including time, storage, round complexity, and progress guarantees) to
the full version. We first analyze the asymptotic behavior of TST in a black-box
manner, and then, examine its concrete efficiency by considering specific instan-
tiations of the underlying plaintext data structures. Additionally, we investigate
both the worst-case and best-case scenarios for the get complexity.

Linearizability. We show that TST is linearizable. In particular, we first intro-
duce a linearizable procedure LZP (in the full version) which defines the lin-
earization points for all possible execution histories H in TST. As a second step,
given the output of the linearizable procedure we prove that TST verifies both
the span membership and the correctness conditions described in Definition 2.
While proving span membership is relatively straightforward, proving correct-
ness is more challenging as it requires showing that for all append operations
appendℓ and get operations getℓ for label ℓ in the history H, the inequality,
linp(appendℓ) < linp(getℓ) holds if and only if the appended value in appendℓ is
part of the output of the get operation getℓ. Conversely, if the append operation
is not part of the output of the get operation, then appendℓ should be linearized
after getℓ. Due to space constraints, we defer the details to the full version, and
only state the main result here.

Concurrent Encrypted Multimaps 29

Corollary 1. If ∆DX, ∆DX, ∆RDX and ∆CTR are linearizable, then all execution
histories H are linearizable and, therefore, TST is linearizable.

Security. We describe TST’s instruction-level leakage L. During an append op-
eration, there is no leakage. During get operations, TST leaks the operation
equality pattern, i.e., correlations between operations on the same label. In the
first round of server communication, when the server receives the first get token
gtk1, it infers correlations with get operations that have the same label and for
which the server has also received the first get token. This is because the first
get token for two gets that query the same label will be the same. Next, during
the third round, when the server receives new checkpoint addresses in gtk3, it
learns new correlations between the current get and append operations. These
correlations are with the appends that added their counters to the range dictio-
nary before the get operation read that range dictionary. This is because when
the server sees the new checkpoint address, it learns that all these nodes have
the same label as the current get operation. Due to space constraints, a formal
and detailed description of the leakage profile L and proof of the theorem are in
the full version.

Theorem 1. If F is pseudo-random, SKE is a CPA-secure, and ∆DX, ∆DX,
∆RDX, and ∆CTR are all linearizable, then TST is (χlz,L)-secure in the random
oracle model.

Note. In the sequential setting, our construction achieves forward privacy which
has been extensively studied in the STE literature and is the standard security
goal for dynamic encrypted multi-maps. As pointed out in [63], forward privacy
can protect against certain injection attacks but recent work [4] has shown that
forward privacy has some limitations. In the concurrent setting, there are no
standard security notions for leakage profiles and, as far as we know, there are
no concurrent-specific leakage attacks (e.g., that also exploit adversarial schedul-
ing), therefore we do not have a baseline for comparison other than the one in
the sequential setting.

References

1. Agarwal, A., Kamara, S.: Encrypted distributed hash tables. Tech. Rep. 2019/1126,
IACR ePrint Cryptography Archive (2019), https://eprint.iacr.org/2019/
1126.pdf

2. Agarwal, A., Kamara, S.: Encrypted key-value stores. In: Progress in Cryptology–
INDOCRYPT 2020: 21st International Conference on Cryptology in India, Ban-
galore, India, December 13–16, 2020, Proceedings 21. pp. 62–85. Springer (2020)

3. Amjad, G., Kamara, S., Moataz, T.: Structured encryption secure against file in-
jection attacks (2021), (under submission at CRYPTO ’21)

4. Amjad, G., Kamara, S., Moataz, T.: Injection-secure structured and searchable
symmetric encryption. In: International Conference on the Theory and Application
of Cryptology and Information Security. pp. 232–262. Springer (2023)

https://eprint.iacr.org/2019/1126.pdf
https://eprint.iacr.org/2019/1126.pdf

30 A. Agarwal et al.

5. Asharov, G., Naor, M., Segev, G., Shahaf, I.: Searchable symmetric encryption:
Optimal locality in linear space via two-dimensional balanced allocations. In: ACM
Symposium on Theory of Computing (STOC ’16). pp. 1101–1114. STOC ’16, ACM,
New York, NY, USA (2016). https://doi.org/10.1145/2897518.2897562, http:
//doi.acm.org/10.1145/2897518.2897562

6. Asharov, G., Komargodski, I., Lin, W.K., Peserico, E., Shi, E.: Optimal oblivious
parallel RAM. In: Proceedings of the 2022 Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA). pp. 2459–2521. SIAM (2022)

7. Asharov, G., Segev, G., Shahaf, I.: Tight tradeoffs in searchable symmetric en-
cryption. In: Annual International Cryptology Conference. pp. 407–436. Springer
(2018)

8. Bost, R.: Sophos - forward secure searchable encryption. In: ACM Conference on
Computer and Communications Security (CCS ’16) (2016)

9. Bost, R., Minaud, B., Ohrimenko, O.: Forward and backward private searchable
encryption from constrained cryptographic primitives. In: ACM Conference on
Computer and Communications Security (CCS ’17) (2017)

10. Boyle, E., Chung, K.M., Pass, R.: Oblivious parallel RAM and applications. In:
Theory of Cryptography Conference. pp. 175–204. Springer (2015)

11. Bronson, N.G., Casper, J., Chafi, H., Olukotun, K.: A practical concurrent binary
search tree. ACM Sigplan Notices 45(5), 257–268 (2010)

12. Canetti, R.: Security and composition of multi-party cryptographic protocols. Jour-
nal of Cryptology 13(1) (2000)

13. Cash, D., Jarecki, S., Jutla, C., Krawczyk, H., Rosu, M., Steiner, M.: Highly-
scalable searchable symmetric encryption with support for boolean queries. In:
Advances in Cryptology - CRYPTO ’13. Springer (2013)

14. Cash, D., Tessaro, S.: The locality of searchable symmetric encryption. In: Ad-
vances in Cryptology - EUROCRYPT 2014 (2014)

15. Cash, D., Jaeger, J., Jarecki, S., Jutla, C., Krawczyk, H., Rosu, M., Steiner, M.:
Dynamic searchable encryption in very-large databases: Data structures and im-
plementation. In: Network and Distributed System Security Symposium (NDSS
’14) (2014)

16. Cash, D., Ng, R., Rivkin, A.: Improved structured encryption for sql databases via
hybrid indexing. In: Applied Cryptography and Network Security: 19th Interna-
tional Conference, ACNS 2021, Kamakura, Japan, June 21–24, 2021, Proceedings,
Part II. pp. 480–510. Springer (2021)

17. Chan, T.H.H., Chung, K.M., Shi, E.: On the depth of oblivious parallel RAM.
In: Advances in Cryptology–ASIACRYPT 2017: 23rd International Conference on
the Theory and Applications of Cryptology and Information Security, Hong Kong,
China, December 3-7, 2017, Proceedings, Part I 23. pp. 567–597. Springer (2017)

18. Chan, T.H.H., Guo, Y., Lin, W.K., Shi, E.: Oblivious hashing revisited, and
applications to asymptotically efficient ORAM and OPRAM. In: Advances in
Cryptology–ASIACRYPT 2017: 23rd International Conference on the Theory and
Applications of Cryptology and Information Security, Hong Kong, China, Decem-
ber 3-7, 2017, Proceedings, Part I 23. pp. 660–690. Springer (2017)

19. Chan, T.H.H., Nayak, K., Shi, E.: Perfectly secure oblivious parallel RAM. In:
Theory of Cryptography Conference. pp. 636–668. Springer (2018)

20. Chase, M., Kamara, S.: Structured encryption and controlled disclosure. In: Ad-
vances in Cryptology - ASIACRYPT ’10. Lecture Notes in Computer Science,
vol. 6477, pp. 577–594. Springer (2010)

21. Chase, M., Kamara, S.: Structured encryption and controlled disclosure. Tech. Rep.
2011/010.pdf, IACR Cryptology ePrint Archive (2010)

https://doi.org/10.1145/2897518.2897562
https://doi.org/10.1145/2897518.2897562
http://doi.acm.org/10.1145/2897518.2897562
http://doi.acm.org/10.1145/2897518.2897562

Concurrent Encrypted Multimaps 31

22. Chen, B., Lin, H., Tessaro, S.: Oblivious parallel RAM: improved efficiency and
generic constructions. In: Theory of Cryptography: 13th International Conference,
TCC 2016-A, Tel Aviv, Israel, January 10-13, 2016, Proceedings, Part II 13. pp.
205–234. Springer (2016)

23. Curtmola, R., Garay, J., Kamara, S., Ostrovsky, R.: Searchable symmetric en-
cryption: Improved definitions and efficient constructions. In: ACM Conference on
Computer and Communications Security (CCS ’06). pp. 79–88. ACM (2006)

24. Demertzis, I., Papamanthou, C.: Fast searchable encryption with tunable locality.
In: ACM International Conference on Management of Data (SIGMOD ’17). pp.
1053–1067. SIGMOD ’17, ACM, New York, NY, USA (2017). https://doi.org/
10.1145/3035918.3064057, http://doi.acm.org/10.1145/3035918.3064057

25. Demertzis, I., Papadopoulos, D., Papamanthou, C.: Searchable encryption with
optimal locality: Achieving sublogarithmic read efficiency. In: Advances in Cryp-
tology - CRYPTO ’18. pp. 371–406. Springer (2018)

26. Ellen, F., Fatourou, P., Ruppert, E., van Breugel, F.: Non-blocking binary search
trees. In: Proceedings of the 29th ACM SIGACT-SIGOPS symposium on Principles
of distributed computing. pp. 131–140 (2010)

27. Ellis, C.S.: Concurrency in linear hashing. ACM Transactions on Database Systems
(TODS) 12(2), 195–217 (1987)

28. Etemad, M., Küpccü, A., Papamanthou, C., Evans, D.: Efficient dynamic search-
able encryption with forward privacy. PoPETs 2018(1), 5–20 (2018). https://doi.
org/10.1515/popets-2018-0002, https://doi.org/10.1515/popets-2018-0002

29. Faber, S., Jarecki, S., Krawczyk, H., Nguyen, Q., Rosu, M., Steiner, M.: Rich
queries on encrypted data: Beyond exact matches. In: European Symposium on
Research in Computer Security (ESORICS ’15). Lecture Notes in Computer Sci-
ence. vol. 9327, pp. 123–145 (2015)

30. Garg, S., Mohassel, P., Papamanthou, C.: TWORAM: efficient oblivious RAM
in two rounds with applications to searchable encryption. In: Advances in
Cryptology - CRYPTO 2016. pp. 563–592 (2016). https://doi.org/10.1007/
978-3-662-53015-3_20, https://doi.org/10.1007/978-3-662-53015-3_20

31. George, M., Kamra, S., Moataz, T.: Structured encryption and dynamic leakage
suppression. In: Advances in Cryptology - EUROCRYPT 2021 (2021)

32. Greenwald, M.: Two-handed emulation: how to build non-blocking implementa-
tions of complex data-structures using dcas. In: Proceedings of the twenty-first
annual symposium on Principles of distributed computing. pp. 260–269 (2002)

33. Hahn, F., Kerschbaum, F.: Searchable encryption with secure and efficient updates.
In: ACM Conference on Computer and Communications Security (CCS ’14). pp.
310–320. CCS ’14, ACM, New York, NY, USA (2014). https://doi.org/10.1145/
2660267.2660297, http://doi.acm.org/10.1145/2660267.2660297

34. Herlihy, M., Shavit, N., Luchangco, V., Spear, M.: The art of multiprocessor pro-
gramming. Newnes (2020)

35. Herlihy, M.P., Wing, J.M.: Linearizability: A correctness condition for concurrent
objects. ACM Transactions on Programming Languages and Systems (TOPLAS)
12(3), 463–492 (1990)

36. Hsu, M., Yang, W.P.: Concurrent operations in extendible hashing. In: VLDB.
vol. 86, pp. 25–28 (1986)

37. Hubert Chan, T.H., Shi, E.: Circuit OPRAM: Unifying statistically and compu-
tationally secure orams and oprams. In: Theory of Cryptography Conference. pp.
72–107. Springer (2017)

38. Kamara, S., Moataz, T.: Boolean searchable symmetric encryption with worst-case
sub-linear complexity. In: Advances in Cryptology - EUROCRYPT ’17 (2017)

https://doi.org/10.1145/3035918.3064057
https://doi.org/10.1145/3035918.3064057
https://doi.org/10.1145/3035918.3064057
https://doi.org/10.1145/3035918.3064057
http://doi.acm.org/10.1145/3035918.3064057
https://doi.org/10.1515/popets-2018-0002
https://doi.org/10.1515/popets-2018-0002
https://doi.org/10.1515/popets-2018-0002
https://doi.org/10.1515/popets-2018-0002
https://doi.org/10.1515/popets-2018-0002
https://doi.org/10.1007/978-3-662-53015-3_20
https://doi.org/10.1007/978-3-662-53015-3_20
https://doi.org/10.1007/978-3-662-53015-3_20
https://doi.org/10.1007/978-3-662-53015-3_20
https://doi.org/10.1007/978-3-662-53015-3_20
https://doi.org/10.1145/2660267.2660297
https://doi.org/10.1145/2660267.2660297
https://doi.org/10.1145/2660267.2660297
https://doi.org/10.1145/2660267.2660297
http://doi.acm.org/10.1145/2660267.2660297

32 A. Agarwal et al.

39. Kamara, S., Moataz, T.: SQL on Structurally-Encrypted Data. In: Asiacrypt (2018)
40. Kamara, S., Papamanthou, C.: Parallel and dynamic searchable symmetric encryp-

tion. In: Financial Cryptography and Data Security (FC ’13) (2013)
41. Kamara, S., Papamanthou, C., Roeder, T.: Dynamic searchable symmetric encryp-

tion. In: ACM Conference on Computer and Communications Security (CCS ’12).
ACM Press (2012)

42. Kamara, S., Moataz, T.: Design and analysis of ost. Tech. rep., MongoDB (2022)
43. Kamara, S., Moataz, T., Ohrimenko, O.: Structured encryption and leakae sup-

pression. In: Advances in Cryptology - CRYPTO ’18 (2018)
44. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. Chapman &

Hall/CRC (2008)
45. Kim, K.S., Kim, M., Lee, D., Park, J.H., Kim, W.H.: Forward secure dynamic

searchable symmetric encryption with efficient updates. In: Proceedings of the
2017 ACM SIGSAC Conference on Computer and Communications Security. pp.
1449–1463 (2017)

46. Korenfeld, B.: CBTree: a Practical Concurrent Self-adjusting Search Tree. Univer-
sity of Tel-Aviv (2012)

47. Kumar, V.: Concurrent operations on extendible hashing and its performance.
Communications of the ACM 33(6), 681–694 (1990)

48. Lamport: How to make a multiprocessor computer that correctly executes multi-
process programs. IEEE transactions on computers 100(9), 690–691 (1979)

49. Lea, D.: Hash table util. concurrent. concurrenthashmap, revision 1.3. JSR-166,
the proposed Java Concurrency Package (2003)

50. Michael, M.M.: High performance dynamic lock-free hash tables and list-based sets.
In: Proceedings of the fourteenth annual ACM symposium on Parallel algorithms
and architectures. pp. 73–82 (2002)

51. Microsoft: ConcurrentDictionary.TryUpdate Method. https://learn.
microsoft.com/en-us/dotnet/api/system.collections.concurrent.
concurrentdictionary-2.tryupdate?view=net-8.0, accessed: September
16, 2024

52. Miers, I., Mohassel, P.: Io-dsse: Scaling dynamic searchable encryption to mil-
lions of indexes by improving locality. Cryptology ePrint Archive, Report 2016/830
(2016), http://eprint.iacr.org/2016/830

53. Nayak, K., Katz, J.: An oblivious parallel RAM with O(log2N) parallel runtime
54. Oracle: ConcurrentMap.computeIfPresent Method. https://docs.oracle.

com/javase/8/docs/api/java/util/concurrent/ConcurrentMap.html#
computeIfPresent-K-java.util.function.BiFunction-, accessed: Septem-
ber 16, 2024

55. Pappas, V., Krell, F., Vo, B., Kolesnikov, V., Malkin, T., Choi, S.G., George, W.,
Keromytis, A., Bellovin, S.: Blind seer: A scalable private dbms. In: Security and
Privacy (SP), 2014 IEEE Symposium on. pp. 359–374. IEEE (2014)

56. Popovitch, G.: parallel-hashmap: modify_if() function.
https://github.com/greg7mdp/parallel-hashmap/tree/
8a889d3699b3c09ade435641fb034427f3fd12b6, accessed: September 16, 2024

57. Shalev, O., Shavit, N.: Split-ordered lists: Lock-free extensible hash tables. Journal
of the ACM (JACM) 53(3), 379–405 (2006)

58. Song, D., Wagner, D., Perrig, A.: Practical techniques for searching on encrypted
data. In: IEEE Symposium on Research in Security and Privacy. pp. 44–55. IEEE
Computer Society (2000)

https://learn.microsoft.com/en-us/dotnet/api/system.collections.concurrent.concurrentdictionary-2.tryupdate?view=net-8.0
https://learn.microsoft.com/en-us/dotnet/api/system.collections.concurrent.concurrentdictionary-2.tryupdate?view=net-8.0
https://learn.microsoft.com/en-us/dotnet/api/system.collections.concurrent.concurrentdictionary-2.tryupdate?view=net-8.0
http://eprint.iacr.org/2016/830
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentMap.html#computeIfPresent-K-java.util.function.BiFunction-
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentMap.html#computeIfPresent-K-java.util.function.BiFunction-
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/ConcurrentMap.html#computeIfPresent-K-java.util.function.BiFunction-
https://github.com/greg7mdp/parallel-hashmap/tree/8a889d3699b3c09ade435641fb034427f3fd12b6
https://github.com/greg7mdp/parallel-hashmap/tree/8a889d3699b3c09ade435641fb034427f3fd12b6

Concurrent Encrypted Multimaps 33

59. Song, X., Dong, C., Yuan, D., Xu, Q., Zhao, M.: Forward private searchable sym-
metric encryption with optimized i/o efficiency. IEEE Transactions on Dependable
and Secure Computing 17(5), 912–927 (2018)

60. Stefanov, E., Papamanthou, C., Shi, E.: Practical dynamic searchable encryp-
tion with small leakage. In: Network and Distributed System Security Symposium
(NDSS ’14) (2014)

61. Triplett, J., McKenney, P.E., Walpole, J.: Resizable, scalable, concurrent hash
tables via relativistic programming. In: 2011 USENIX Annual Technical Conference
(USENIX ATC 11) (2011)

62. Valois, J.D.: Lock-free linked lists using compare-and-swap. In: Proceedings of the
fourteenth annual ACM symposium on Principles of distributed computing. pp.
214–222 (1995)

63. Zhang, Y., Katz, J., Papamanthou, C.: All your queries are belong to us: The power
of file-injection attacks on searchable encryption. In: USENIX Security Symposium
(2016)

	Concurrent Encrypted Multimaps

